On a strategic motivation of tacit collusion:
the Nash-2 equilibrium concept

Marina Sandomirskaya

CMSSE & SPb EMI RAS
sandomirskaya_ms@mail.ru

The Third International Conference
«Industrial Organization and Spatial Economics»
August 26, 2014

Marina Sandomirskaya (CMSSE, EMI) Nash-2 equilibrium August 26 1/24



Why to bother about extending the Nash equilibrium
concept?

@ It does not always exist in a number of games widely used in
economics:

o Price game in the Hotelling linear city mode
o Tullock contest

o It leads to inadequate game situation.

o Prisoner's dilemma
e Bertrand paradox
e Hotelling minimum differentiation principle
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Why to bother about extending the Nash equilibrium
concept?

@ It does not always exist in a number of games widely used in
economics:

o Price game in the Hotelling linear city mode
o Tullock contest

o It leads to inadequate game situation.

o Prisoner's dilemma
e Bertrand paradox
e Hotelling minimum differentiation principle

We seek for a compromise between fully myopic behavior (NE) and perfect
rationality (Folk theorem).
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Some existing refinements of NE

e Rationalizable conjectural equilibrium (Rubinstein and Wolinsky, 1994)

Oligopolistic equilibrium (D’Aspremont, Dos Santos and Gerard-Varet,
2003)

Reflexive games (Novikov and Chkhartishvili, 2003)

Equilibrium in secure strategies (ESS) (Iskakov and Iskakov, 2005)
Cooperative equilibrium (Halpern and Rong, 2010)

Farsighted pre-equilibrium (Jamroga and Melissen, 2011)

® 6 6 o o

A number of concepts for cooperative games (von Neumann-
Morgenstern stable set, Harsanyi's indirect dominance of coalition
structures, solution in threats and counter-threats, etc.)
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-
Nash-2 equilibrium

Definition (profitable secure deviation)

A deviation s/ of player i at strategy profile s = (s;, s_;) is profitable and

secure if u;(s/,s_;) > uj(sj,s—;) and for any strategy s’ ; of player —i such
that u_;(s/,s" ;) > u_i(s},s_;)

ui(si, ;) > ui(si,s—i)-
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A strategy profile is a Nash-2 equilibrium if no player has a profitable
secure deviation. )
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-
Nash-2 equilibrium

Definition (profitable secure deviation)

A deviation s/ of player i at strategy profile s = (s;, s_;) is profitable and
secure if u;(s/,s_;) > uj(sj,s—;) and for any strategy s’ ; of player —i such
that u_;(s/,s" ;) > u_i(s},s_;)

ui(si, ;) > ui(si,s—i)-

Definition (NE-2)
A strategy profile is a Nash-2 equilibrium if no player has a profitable
secure deviation.

Proposition (A. Iskakov & M. Iskakov, 2012)

NE C ESS C NE-2
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Example: Prisoner’s dilemma

Cooperate | Defect
Cooperate (1,1) (-1,2)
Defect (2,-1) (0,0)
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Example: Prisoner’s dilemma

Cooperate | Defect
Cooperate (1,1) (-1,2)
Defect (2,-1) (0,0)

Mutual defection is a unique NE and a unique ESS.
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Example: Prisoner’s dilemma

Cooperate | Defect
Cooperate (1,1) (-1,2)
Defect (2,-1) (0,0)

Mutual defection is a unique NE and a unique ESS.

But! Both mutual defection and mutual cooperation are NE-2.
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Bertrand model
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N
The model

@ two firms producing a homogeneous product with equal marginal costs
Mc;

@ py is the monopoly price level;
@ D is total demand.
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N
The model

@ two firms producing a homogeneous product with equal marginal costs

me,
@ py is the monopoly price level;
@ D is total demand.

(pi —mc)D,  if p; < p_j,

mi(pi,p=i) = (pi —mc)D/2, if pj = p_;,
0, if pi > p—j.
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NE-2 resolves Bertrand paradox

There exists a unique NE: p = p1 = po = m..
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NE-2 resolves Bertrand paradox

There exists a unique NE: p = p1 = po = m..

Bertrand paradox

If the number of firms increases from one to two, the equilibrium price
decreases from the monopoly price to the competitive price and stays at
the same level as the number of firms increases further.

This is not very realistic: pricing above marginal cost is typical for the
markets with a small number of firms.
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markets with a small number of firms.

ESS yields the same outcome.
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NE-2 resolves Bertrand paradox

There exists a unique NE: p = p1 = po = m..

Bertrand paradox

If the number of firms increases from one to two, the equilibrium price
decreases from the monopoly price to the competitive price and stays at
the same level as the number of firms increases further.

This is not very realistic: pricing above marginal cost is typical for the
markets with a small number of firms.

ESS yields the same outcome.
The «paradox» is resolved within the NE-2 concept: any p = p1 = p2,

such that p € [mc, py], is NE-2.

How to choose among multiple equilibria?
Wiseman (2014), D’Aspremont et al. (2003) J
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Hotelling model of linear city
with symmetric locations
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The «linear city» Hotelling model

Location is the distance d € [0; 1] between firms 1 and 2 equidistant from

the ends of the line.

P, y p2
1-d)/. 1-d)/.
(d)2. '( d)/2

Fig.1

Consumers are uniformly distributed. Demand is totally non-elastic.

Transportation costs are linear.

Price-setting game

Profit functions of firms j = 1, 2:

pi(L+ p—i —pi)/2, iflpi —p-i| < d,
mi(pi, P—i) = § Pis if pi < p—i —d,
0, if pi > p-i+d,
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Assume p, is fixed

A

v, (PP,
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-
NE and ESS in the Hotelling game

Theorem (NE, Hotelling)
For d € [4, 1] the unique NE is p; = p3 = 1. m = m = 1/2.

For d = 0 the unique NE is p; = p; = 0. m; = m = 0.

For d € (0, 3) NE does not exist.
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-
NE and ESS in the Hotelling game

Theorem (NE, Hotelling)
For d € [4, 1] the unique NE is p; = p3 = 1. m = m = 1/2.

For d = 0 the unique NE is p; = p; = 0. m; = m = 0.

For d € (0, 3) NE does not exist.

Theorem (ESS, Hotelling)
For d € [%; 1] the unique ESS is p; = p5 = 1. m1 = mp = 1/2.

For d € [0; %) the unique ESS is p; = p3 =2d. m =m =d < 1/2.
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Simulation results, d = 0.7

price of P2

i i
05 1

L
1.5 25 3
price of P1

Fig.3a. (1, 1) is NE. Yellow area is NE-2.
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Simulation results, d = 0.5

price of P2

1.5 2 25 3!
price of P1

Fig.3b. (1, 1) is NE. Yellow area is NE-2.
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Simulation results, d = 0.35

price of P2

: . : :
05 1 15 2 25 3
price of P1

Fig.3c. (2d, 2d) is ESS. Yellow area is NE-2.
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Simulation results, d = 0.2

price of P2

0.5 1 1.5 2 25 3
price of P1

Fig.3d. (2d, 2d) is ESS. Yellow area is NE-2.
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Boundary NE-2: a closed-form solution

Red: |p1 — p2| = d
p1 = (p2 + 1)/2 and vice versa.

Pink: 2(p1 — d) = p2(1 + p1 — p2) and vice versa.

14+po 14po 2 :
Dark blue: py = =52 + <T) —2d — p2(1 — p2) and vice versa.

2
Light blue: po = % — \/(1;"1) —2d — p1(1 — p1) and vice versa.

Black: p, =2 (1 — 1;—;’) and vice versa.
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Tullock contest
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The model with two players

The contest success function translates the effort x of the players into the
probabilities that each player will obtain the resource R.

x&

pi(Xthi):Wv X#Ovi:]-)z'

If x=20then pj=p_;=1/2.
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The model with two players

The contest success function translates the effort x of the players into the
probabilities that each player will obtain the resource R.

x&

pi(XhX*i):Wv X#O,I.Zl,z.

If x=20then pj=p_;=1/2.

The payoff function for each player

ui(xi, x—j) = Rpi(xi, x_j) — x;.

Without loss of generality assume R =1, x; € [0, 1].
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The model with two players

The contest success function translates the effort x of the players into the
probabilities that each player will obtain the resource R.

x&

pi(XhX*i):mv X#O,I.Zl,z.
If x=20then pj=p_;=1/2.
The payoff function for each player

ui(xi, x—j) = Rpi(xi, x_j) — x;.

Without loss of generality assume R =1, x; € [0, 1].

When « > 2 pure NE doesn’t exist.
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Simulation results, « = 0.7

alpha=0.7
07 == = ,

0.6

05

04

effort of P2

03

effort of P1

Fig.4a. Red point is NE, ESS, NE-2. Yellow area is NE-2.
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Simulation results, « = 1.5

alpha=15

affort of P2

Fig.4b. Red point is NE, ESS, NE-2.

Blue curve and points are ESS, NE-2. Yellow area is NE-2.
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Simulation results, o = 2.3

alpha=23

effort of P2

effort of P1

Fig.4c. Blue points are ESS, NE-2. Yellow area is NE-2.
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Thank you for your attention!

E-mail: sandomirskaya ms@mail.ru
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