Nash-2 Equilibrium Concept: from Strict Competition to Tacit Collusion

Marina Sandomirskaia

CMSSE HSE

June 9, 2015

The 4th Int Conf "Industrial Organization ans Spatial Economics"

Why to seek an extension of Nash equilibrium concept?

Classical Nash equilibrium theory faces sometimes difficulties in widely known economic models:

- It does not always exist in a number of games widely used in economics:
 - Price game in the Hotelling linear city model
 - Tullock contest
- ▶ It leads to "inadequate" game situation.
 - Prisoner's dilemma
 - Bertrand paradox
 - ► Hotelling minimum differentiation principle

How to overcome these problems?

One can change (complicate) the models, or revise the concept of rationality underlying the agents' behaviour.

Theoretical causes

Simon (1976):

"The choice that would be substantively rational for each actor depends on the choices made by the other actors; none can choose without making assumptions about how others will choose."

Nash equilibrium: myopic vs. sophisticated

Some experiments (Goeree, Holt, 2001; Camerer, Ho, Chong, 2004) demonstrate systematic deviations from Nash predictions.

Special discussion in JEL on the Role of Bounded Rationality versus Behavioral Optimization in Economic Models (Vol. 51 No. 2, June 2013)

Related concepts

- Smart_n players (Stahl, 1993)
- ► Cognitive hierarchy (Camerer, Ho, Chong, 2004), or *k*-level rationality (Crawford at al., 2013)
- ▶ The largest consistent set (Chwe, 1994)
- Farsighted pre-equilibrium (Jamroga, Melissen, 2011)
- Theory of moves (Brams, Mattli, 1992)

2-stage predictions:

- ► Equilibrium in secure strategies (Iskakov M., Iskakov A., 2005)
- ► Perfect cooperative equilibrium (Halpern, Rong, 2010)
- ► Nash-2 equilibrium (Sandomirskaia, 2014)
 - = Equilibrium contained by counter-threats (Iskakov M., Iskakov A., 2014)
 - = Sequentially stable set (Fraser, Hipel, 1994: for discrete games)

Definition of Nash-2 equilibrium

2-person non-cooperative game in the normal form (pure strategies)

$$G = (i \in \{1,2\}; s_i \in S_i; u_i : S_1 \times S_2 \rightarrow \overline{R}).$$

Definition (profitable deviation)

A deviation s'_i of player i at profile $s = (s_i, s_{-i})$ is profitable if $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i})$.

Definition (secure deviation)

A deviation s'_i of player i at profile $s = (s_i, s_{-i})$ is secure if for any profitable deviation s'_{-i} of the opponent at intermediate profile (s'_i, s_{-i}) player i is not worse off:

$$u_i(s'_i, s'_{-i}) \geq u_i(s_i, s_{-i}).$$

Definition (NE-2)

A strategy profile is a Nash-2 equilibrium if no player has a profitable secure deviation.

Secure and risky profiles

Definition (threat)

A profitable deviation of player i is called a threat to player -i if player -i gains less than in initial profile.

Definition (secure profile)

A profile is called secure if no player poses threats to the opponent.

Definition (risky profile)

A profile is called risky if there is at least one threat from one player to another.

The set of NE-2 is divided into two subsets:

- secure profiles (Equilibrium in Secure Strategies: Iskakov, 2005)
- ▶ risky outcomes (NE-2 \ EinSS)

Interpretation

<u>Secure</u> part can be regarded as a *tough competition*: agents protect themselves against any possible threats, even non-credible.

In <u>risky</u> situations agents have opportunities to harm one to another, but they do not actualize these threats as they are not credible.

Interpreted as tacit collusion.

Indeed, if explicit collusion is a NE-2, then it is in NE-2 \setminus EinSS.

Theorem

If a collusion outcome is not a Nash equilibrium, then it is a risky profile.

Existence

Theorem

Nash-2 equilibrium in pure strategies exists in almost every finite game.

With some restriction in the definition of secure deviation the theorem holds for any continuous game with **bounded** utility function.

Important feature

In most cases Nash-2 equilibrium isn't unique. How to choose?

- ► EinSS or Nash equilibrium (dumping pricing in Hotelling model, Iskakov M., Iskakov A., 2013)
- Collusion (or Pareto efficient)
- ► Introducing a measure of feasibility on the set of NE-2 (Sandomirskaia, 2015)

Idea of measure building

Definition (secure path)

A path of profiles $\{(s_i^t,s_{-i}^t)\}_{t=1,\dots,T}$ is called a *secure path* if each its arc $(s_i^t,s_{-i}^t) \to (s_i^{t+1},s_{-i}^{t+1}) = (s_i^{t+1},s_{-i}^t)$ contains a secure profitable deviation s_i^{t+1} for some player i.

For any profile s denote the set of all NE-2 that can be reached from s through some secure path by NE-2 $_s$.

The measure of feasibility on the set of NE-2 is calculated with the following rule:

$$\nu(s) = \frac{\mu(s)}{\mu(S_1 \times S_2)} + \sum_{\tilde{s}: s \in \mathsf{NE-}2_{\tilde{s}}} \frac{\mu(\tilde{s})}{\mu(\mathsf{NE-}2_{\tilde{s}})\mu(S_1 \times S_2)},$$

 $\forall s \in \mathsf{NE}\text{-}2, \ \mu$ is a measure on the action set.

Example 1: finite game

	L	R
Т	(2/3, 1/3)	(-1, 2)
С	(1/2, 1/2)	(1, 0)
В	(1, 0)	(0, 1)

(T,L) is an isolated NE-2, thus
$$\nu(T,L) = 1/6$$
.

$$deg^{-}(C, L) = 4$$
. Thereby, $\nu(C, L) = \frac{1}{6}(1+4) = 5/6$.

Example 2: Bertrand duopoly with homogeneous product

- two firms producing a homogeneous product with equal marginal costs c;
- ▶ D demand is a linear function of the price Q(p) = 1 p.

$$\pi_i(p_i, p_{-i}) = \begin{cases} (p_i - c)Q(p_i), & \text{if } p_i < p_{-i}, \\ (p_i - c)Q(p_i)/2, & \text{if } p_i = p_{-i}, \\ 0, & \text{if } p_i > p_{-i}. \end{cases}$$

NE-2 provides any price level $p = p_1 = p_2 \in [c, 1]$.

In particular, monopoly price level $p = \frac{1+c}{2}$ is in NE-2.

There is a secure path from each profile (p_1, p_2) , $p_1 \neq p_2$, $p_1, p_2 \in [c, 1]$, to NE-2 profile (p, p) with $p \in [c, \min(p_1, p_2)]$.

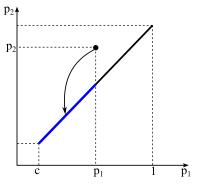


Fig. 1. The structure of secure paths in Bertrand model

The measure:

$$u(p,p) = \frac{2}{1-c} \left(\ln \frac{1-c}{p-c} - \frac{1-p}{1-c} \right), \quad \forall p \in [c,1].$$

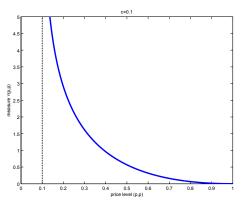


Fig. 2. The measure of feasibility on the set of NE-2 in Bertrand model with c=0.1

Cournot duopoly

Two firms i=1,2 produce $q_1,\ q_2$ units of homogeneous product with equal constant marginal costs c per unit.

Equilibrium price is
$$p(Q) = 1 - Q$$
, $Q = q_1 + q_2$ is total output.

i-th firm profit is

$$\pi_i(q_1,q_2)=q_i\cdot(p(Q)-c)=q_i(1-q_1-q_2-c).$$

Theorem

Nash-2 equilibria are profiles (q_1, q_2) from

b) risky set
$$q_1 = q_2 \in (0, (1-c)/3)$$
, including collusive outcome $(1-c)/4, (1-c)/4$.

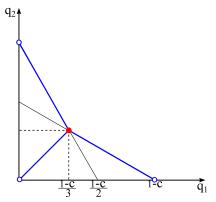


Fig.3. Red point is NE, NE-2. Blue lines are NE-2.

NE-2 set provides a number of regimes with various degree of toughness from competitive till collusive.

Oligopolistic equilibrium (d'Aspremont, Dos Santos Ferreira, Gerard-Varet, 2007).

Bertrand duopoly with differentiated products

- ▶ two firms producing imperfect substitutes with marginal costs equal c_1 and c_2 , respectively;
- Firms' demand curves are:

$$q_1 = 1 - p_1 - \gamma(p_1 - p_2),$$

 $q_2 = 1 - p_2 - \gamma(p_2 - p_1).$

The firms' profits are

$$\pi_1(p_1, p_2) = (p_1 - c_1)(1 - p_1 - \gamma(p_1 - p_2)).$$

 $\pi_2(p_1, p_2) = (p_2 - c_2)(1 - p_2 - \gamma(p_2 - p_1)).$

 $\gamma = 0$ – monopoly;

 $\gamma \to \infty$ – homogeneous product.

Boundary NE-2: a closed-form solution

Non-negativity of markup and demand:

$$p_1 \ge c_1, \quad p_2 \ge c_2,$$
 $q_1(p_1, p_2) \ge 0, \quad q_2(p_1, p_2) \ge 0.$

NE-2 prices exceed best response level:

$$p_1 \geq rac{1 + \gamma p_2 + c_1(1 + \gamma)}{2(1 + \gamma)}, \quad p_2 \geq rac{1 + \gamma p_1 + c_2(1 + \gamma)}{2(1 + \gamma)}.$$

At NE-2 firms get not less then their guaranteed gains:

$$\pi_1(\rho_1, \rho_2) \geq \frac{(1-c_1(1+\gamma))^2}{4(1+\gamma)}, \quad \pi_2(\rho_1, \rho_2) \geq \frac{(1-c_2(1+\gamma))^2}{4(1+\gamma)}.$$

The absence of secure profitable deviations:

$$\left(\frac{1-c_1}{2} - \frac{\gamma(1+\gamma)(\rho_2-c_2)}{2(1+2\gamma)}\right) \left(\frac{1+2\gamma+\gamma^2c_2-(1+\gamma)^2c_1}{2(1+\gamma)} + \frac{3}{2}(\rho_2-c_2)\right) \leq \pi_1(\rho_1,\rho_2), \\ \left(\frac{1-c_2}{2} - \frac{\gamma(1+\gamma)(\rho_1-c_1)}{2(1+2\gamma)}\right) \left(\frac{1+2\gamma+\gamma^2c_1-(1+\gamma)^2c_2}{2(1+\gamma)} + \frac{3}{2}(\rho_1-c_1)\right) \leq \pi_2(\rho_1,\rho_2).$$

Dynamic on γ

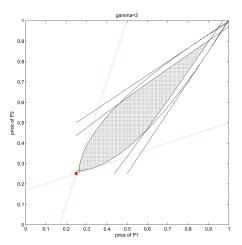


Fig. 4a. $c_1=c_2=0$, $\gamma=2$. Red point is NE, ESS, NE-2. Shaded area is NE-2.

Dynamic on γ

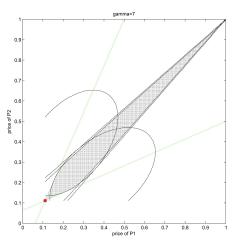


Fig.4b. $c_1=c_2=0$, $\gamma=7$. Red point is NE, ESS, NE-2. Shaded area is NE-2.

Dynamic on γ

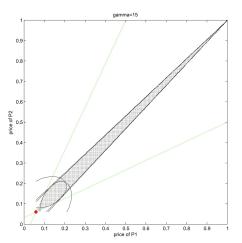


Fig.4c. $c_1=c_2=0$, $\gamma=15$. Red point is NE, ESS, NE-2. Shaded area is NE-2.

Dynamic on $c_1 - c_2$

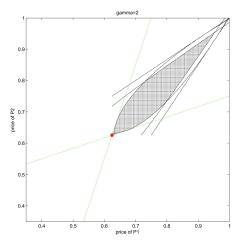


Fig.5a. $c_1=c_2=0.5,\ \gamma=2.$ Red point is NE, ESS, NE-2. Shaded area is NE-2.

Dynamic on $c_1 - c_2$

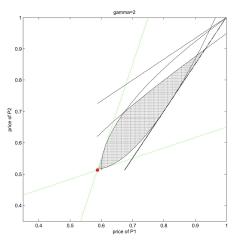


Fig.5b. $c_1=0.5,\ c_2=0.3,\ \gamma=2.$ Red point is NE, ESS, NE-2. Shaded area is NE-2.

Dynamic on $c_1 - c_2$

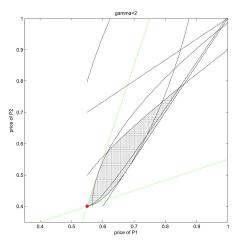


Fig.5c. $c_1=0.5,\ c_2=0.1,\ \gamma=2.$ Red point is NE, ESS, NE-2. Shaded area is NE-2.

Tullock contest (rent-seeking model, 1967)

The contest success function translates the effort x of the players into the probabilities that each player will obtain the resource R.

$$p_i(x_i, x_{-i}) = \frac{x_i^{\alpha}}{x_i^{\alpha} + x_{-i}^{\alpha}}, \quad x \neq 0, i = 1, 2.$$

If x = 0 then $p_i = p_{-i} = 1/2$.

The payoff function: $u_i(x_i, x_{-i}) = Rp_i(x_i, x_{-i}) - x_i$. Without loss of generality assume $R = 1, x_i \in [0, 1]$.

When $\alpha > 2$ pure NE doesn't exist.

Secure NE-2 are found in (Iskakov M., Iskakov A., Zakharov, 2013)

Simulation results: efforts, $\alpha = 0.7$

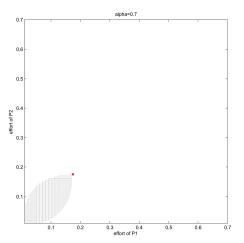


Fig.6a. Red point is NE, ESS, NE-2. Shaded area is NE-2.

Simulation results: efforts, $\alpha = 1.5$

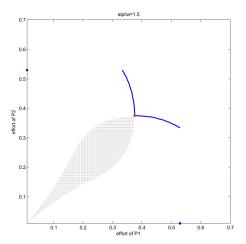


Fig.6b. Red point is NE, ESS, NE-2. Blue curve and points are ESS, NE-2. Shaded area is NE-2.

Simulation results: efforts, $\alpha = 2.3$

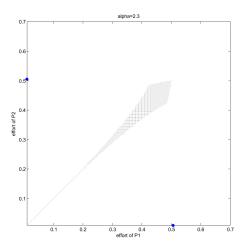


Fig.6c. Blue points are ESS, NE-2. Shaded area is NE-2.

Simulation results: PROFITS, $\alpha = 1.5$

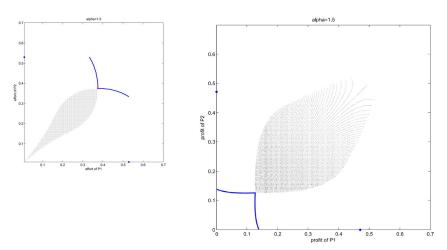


Fig.7. Curves and blue points are ESS and NE-2 payoffs, shaded area is set of profits at NE-2.

Efficiency

Rent dissipation is the ratio $(x_1 + x_2)/R$.

The higher is the degree of rent dissipation, the lower is the efficiency of the equilibrium.

For $\alpha>2$ NE in mixed strategies is completely dissipated (Baye et. al., 1994).

All secure "non-monopolistic" NE-2 are less efficient than NE.

All risky NE-2 are more efficient!

Summarizing...

Additional example (closed-form solutions):

► Hotelling linear city model (2014)

Advantages of NE-2:

- + Existence
- + Strategic motivation for tacit collusion

Challenges of NE-2:

- Multiplicity
- Empirical support

Thank you for your attention!

E-mail: sandomirskaya_ms@mail.ru