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Why to seek an extension of Nash equilibrium concept?

Classical Nash equilibrium theory faces sometimes di�culties in
widely known economic models:

I It does not always exist in a number of games widely used in
economics:

I Price game in the Hotelling linear city model
I Tullock contest

I It leads to "inadequate" game situation.
I Prisoner's dilemma
I Bertrand paradox
I Hotelling minimum di�erentiation principle

How to overcome these problems?
One can change (complicate) the models, or revise the concept of
rationality underlying the agents' behaviour.



Theoretical causes

Simon (1976):

"The choice that would be substantively rational for each actor
depends on the choices made by the other actors; none can choose
without making assumptions about how others will choose."

Nash equilibrium: myopic vs. sophisticated

Some experiments (Goeree, Holt, 2001; Camerer, Ho, Chong, 2004)
demonstrate systematic deviations from Nash predictions.

Special discussion in JEL on the Role of Bounded Rationality versus

Behavioral Optimization in Economic Models (Vol. 51 No. 2, June
2013)



Related concepts

I Smartn players (Stahl, 1993)

I Cognitive hierarchy (Camerer, Ho, Chong, 2004), or k-level
rationality (Crawford at al., 2013)

I The largest consistent set (Chwe, 1994)

I Farsighted pre-equilibrium (Jamroga, Melissen, 2011)

I Theory of moves (Brams, Mattli, 1992)

2-stage predictions:

I Equilibrium in secure strategies (Iskakov M., Iskakov A., 2005)

I Perfect cooperative equilibrium (Halpern, Rong, 2010)

I Nash-2 equilibrium (Sandomirskaia, 2014)
= Equilibrium contained by counter-threats (Iskakov M.,
Iskakov A., 2014)
= Sequentially stable set (Fraser, Hipel, 1994: for discrete
games)



De�nition of Nash-2 equilibrium

2-person non-cooperative game in the normal form (pure strategies)
G = (i ∈ {1, 2}; si ∈ Si ; ui : S1 × S2 → R).

De�nition (pro�table deviation)

A deviation s ′i of player i at pro�le s = (si , s−i ) is pro�table if
ui (s

′
i , s−i ) > ui (si , s−i ).

De�nition (secure deviation)

A deviation s ′i of player i at pro�le s = (si , s−i ) is secure if for any
pro�table deviation s ′−i of the opponent at intermediate pro�le
(s ′i , s−i ) player i is not worse o�:

ui (s
′
i , s
′
−i ) ≥ ui (si , s−i ).

De�nition (NE-2)

A strategy pro�le is a Nash-2 equilibrium if no player has a
pro�table secure deviation.



Secure and risky pro�les

De�nition (threat)

A pro�table deviation of player i is called a threat to player −i if
player −i gains less than in initial pro�le.

De�nition (secure pro�le)

A pro�le is called secure if no player poses threats to the opponent.

De�nition (risky pro�le)

A pro�le is called risky if there is at least one threat from one
player to another.

The set of NE-2 is divided into two subsets:

I secure pro�les (Equilibrium in Secure Strategies: Iskakov, 2005)

I risky outcomes (NE-2 \ EinSS)



Interpretation

Secure part can be regarded as a tough competition:
agents protect themselves against any possible threats, even
non-credible.

In risky situations agents have opportunities to harm one to
another, but they do not actualize these threats as they are not
credible.
Interpreted as tacit collusion.

Indeed, if explicit collusion is a NE-2, then it is in NE-2 \ EinSS.

Theorem
If a collusion outcome is not a Nash equilibrium, then it is a risky

pro�le.



Existence

Theorem
Nash-2 equilibrium in pure strategies exists in almost every �nite

game.

With some restriction in the de�nition of secure deviation the
theorem holds for any continuous game with bounded utility
function.

Important feature

In most cases Nash-2 equilibrium isn't unique. How to choose?

I EinSS or Nash equilibrium (dumping pricing in Hotelling
model, Iskakov M., Iskakov A., 2013)

I Collusion (or Pareto e�cient)

I Introducing a measure of feasibility on the set of NE-2
(Sandomirskaia, 2015)



Idea of measure building

De�nition (secure path)

A path of pro�les {(sti , st−i )}t=1,...,T is called a secure path if each

its arc (sti , s
t
−i )→ (st+1

i , st+1
−i ) = (st+1

i , st−i ) contains a secure

pro�table deviation st+1
i for some player i .

For any pro�le s denote the set of all NE-2 that can be reached
from s through some secure path by NE-2s .

The measure of feasibility on the set of NE-2

is calculated with the following rule:

ν(s) =
µ(s)

µ(S1 × S2)
+

∑
s̃:s∈NE-2s̃

µ(s̃)

µ(NE-2s̃)µ(S1 × S2)
,

∀s ∈ NE-2, µ is a measure on the action set.



Example 1: �nite game

L R

T (2/3, 1/3) (-1, 2)

C (1/2, 1/2) (1, 0)

B (1, 0) (0, 1)

(T,L) is an isolated NE-2, thus ν(T , L) = 1/6.

deg−(C , L) = 4. Thereby, ν(C , L) = 1
6(1 + 4) = 5/6.



Example 2: Bertrand duopoly with homogeneous product

I two �rms producing a homogeneous product with equal
marginal costs c ;

I D demand is a linear function of the price Q(p) = 1− p.

πi (pi , p−i ) =


(pi − c)Q(pi ), if pi < p−i ,
(pi − c)Q(pi )/2, if pi = p−i ,
0, if pi > p−i .

NE-2 provides any price level p = p1 = p2 ∈ [c, 1].

In particular, monopoly price level p = 1+c
2 is in NE-2.



There is a secure path from each pro�le (p1, p2), p1 6= p2,
p1, p2 ∈ [c , 1], to NE-2 pro�le (p, p) with p ∈ [c ,min(p1, p2)].

Fig. 1. The structure of secure paths in Bertrand model



The measure:

ν(p, p) =
2

1− c

(
ln

1− c

p − c
− 1− p

1− c

)
, ∀p ∈ [c , 1].
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Fig. 2. The measure of feasibility on the set of NE-2
in Bertrand model with c = 0.1



Cournot duopoly

Two �rms i = 1, 2 produce q1, q2 units of homogeneous product
with equal constant marginal costs c per unit.

Equilibrium price is p(Q) = 1− Q,
Q = q1 + q2 is total output.

i-th �rm pro�t is
πi (q1, q2) = qi · (p(Q)− c) = qi (1− q1 − q2 − c).

Theorem
Nash-2 equilibria are pro�les (q1, q2) from

a) secure set
{(

b; 1−c−b
2

)
∪
(
1−c−b

2 ; b
)
| b ∈

[
1−c
3 ; 1− c

)}
,

b) risky set q1 = q2 ∈ (0, (1− c)/3), including collusive outcome

(1− c)/4, (1− c)/4.



Fig.3. Red point is NE, NE-2. Blue lines are NE-2.

NE-2 set provides a number of regimes with various degree of
toughness from competitive till collusive.
Oligopolistic equilibrium (d'Aspremont, Dos Santos Ferreira,
Gerard-Varet, 2007).



Bertrand duopoly with di�erentiated products

I two �rms producing imperfect substitutes with marginal costs
equal c1 and c2, respectively;

I Firms' demand curves are:

q1 = 1− p1 − γ(p1 − p2),

q2 = 1− p2 − γ(p2 − p1).

The �rms' pro�ts are

π1(p1, p2) = (p1 − c1)(1− p1 − γ(p1 − p2)).

π2(p1, p2) = (p2 − c2)(1− p2 − γ(p2 − p1)).

γ = 0 � monopoly;
γ →∞ � homogeneous product.



Boundary NE-2: a closed-form solution
Non-negativity of markup and demand:

p1 ≥ c1, p2 ≥ c2,

q1(p1, p2) ≥ 0, q2(p1, p2) ≥ 0.

NE-2 prices exceed best response level:

p1 ≥
1 + γp2 + c1(1 + γ)

2(1 + γ)
, p2 ≥

1 + γp1 + c2(1 + γ)

2(1 + γ)
.

At NE-2 �rms get not less then their guaranteed gains:

π1(p1, p2) ≥
(1− c1(1 + γ))2

4(1 + γ)
, π2(p1, p2) ≥

(1− c2(1 + γ))2

4(1 + γ)
.

The absence of secure pro�table deviations:(
1−c1
2 − γ(1+γ)(p2−c2)

2(1+2γ)

)(
1+2γ+γ2c2−(1+γ)2c1

2(1+γ) + 3
2(p2 − c2)

)
≤ π1(p1, p2),(

1−c2
2 − γ(1+γ)(p1−c1)

2(1+2γ)

)(
1+2γ+γ2c1−(1+γ)2c2

2(1+γ) + 3
2(p1 − c1)

)
≤ π2(p1, p2).



Dynamic on γ

Fig. 4a. c1 = c2 = 0, γ = 2. Red point is NE, ESS, NE-2. Shaded
area is NE-2.



Dynamic on γ

Fig.4b. c1 = c2 = 0, γ = 7. Red point is NE, ESS, NE-2. Shaded
area is NE-2.



Dynamic on γ

Fig.4c. c1 = c2 = 0, γ = 15. Red point is NE, ESS, NE-2. Shaded
area is NE-2.



Dynamic on c1 − c2

Fig.5a. c1 = c2 = 0.5, γ = 2. Red point is NE, ESS, NE-2. Shaded
area is NE-2.



Dynamic on c1 − c2

Fig.5b. c1 = 0.5, c2 = 0.3, γ = 2. Red point is NE, ESS, NE-2.
Shaded area is NE-2.



Dynamic on c1 − c2

Fig.5c. c1 = 0.5, c2 = 0.1, γ = 2. Red point is NE, ESS, NE-2.
Shaded area is NE-2.



Tullock contest (rent-seeking model, 1967)

The contest success function translates the e�ort x of the players
into the probabilities that each player will obtain the resource R .

pi (xi , x−i ) =
xαi

xαi + xα−i
, x 6= 0, i = 1, 2.

If x = 0 then pi = p−i = 1/2.

The payo� function: ui (xi , x−i ) = Rpi (xi , x−i )− xi .
Without loss of generality assume R = 1, xi ∈ [0, 1].

When α > 2 pure NE doesn't exist.

Secure NE-2 are found in (Iskakov M., Iskakov A., Zakharov, 2013)



Simulation results: e�orts, α = 0.7

Fig.6a. Red point is NE, ESS, NE-2. Shaded area is NE-2.



Simulation results: e�orts, α = 1.5

Fig.6b. Red point is NE, ESS, NE-2. Blue curve and points are
ESS, NE-2. Shaded area is NE-2.



Simulation results: e�orts, α = 2.3

Fig.6c. Blue points are ESS, NE-2. Shaded area is NE-2.



Simulation results: PROFITS, α = 1.5

Fig.7. Curves and blue points are ESS and NE-2 payo�s, shaded
area is set of pro�ts at NE-2.



E�ciency

Rent dissipation is the ratio (x1 + x2)/R .

The higher is the degree of rent dissipation, the lower is the
e�ciency of the equilibrium.

For α > 2 NE in mixed strategies is completely dissipated (Baye et.
al., 1994).

All secure "non-monopolistic" NE-2 are less e�cient than NE.

All risky NE-2 are more e�cient!



Summarizing...

Additional example (closed-form solutions):

I Hotelling linear city model (2014)

Advantages of NE-2:

+ Existence

+ Strategic motivation for tacit collusion

Challenges of NE-2:

- Multiplicity

- Empirical support



Thank you for your attention!

E-mail: sandomirskaya_ms@mail.ru
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