• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

«Приятно думать, что найденные решения в перспективе могут помогать людям»

Университет Иннополис

Университет Иннополис
Фото: media.innopolis.university

В Университете Иннополис подвели итоги международного отраслевого онлайн-хакатона Global Al Challenge. В нем соревновались команды разработчиков в области создания новых материалов с применением искусственного интеллекта. Третье место заняла команда DrugANNs, в числе участников которой — студенты факультета компьютерных наук НИУ ВШЭ.

За победу в онлайн-конкурсе боролись 90 команд из 15 стран, а общий призовой фонд составил 1 миллион рублей. Задача заключалась в предсказании активности разных молекул против определенного белка вируса COVID-19. Команды должны были оценить, является ли молекула активной против белка, построить модель, которая умеет предсказывать такую активность, и сделать предсказания для тестового набора данных.

Герман Магай

«По описанию задача показалась нам интересной, — отмечает Герман Магай, аспирант ФКН ВШЭ по профилю «Теоретические основы информатики», участник команды DrugANNs. — И мы решили собрать команду. В течение двух недель старались регулярно созваниваться и делиться прогрессом друг с другом, распределяли задачи. Помогло занять призовое место то, что каждый в команде внес свой вклад, каждый был специалистом в своей области, и в сумме наши усилия дали хороший результат».

Максим Бекетов

Максим Бекетов, аспирант 2-го года кафедры высшей математики ВШЭ, — о задаче: «Данных по такой активности, реально полученных в лаборатории или же методами вычислительной химии, не так много. К тому же у одной молекулы, если она большая, есть, скажем так, экспоненциально много конфигураций ее составных частей в пространстве. Какие-то из них могут оказаться активными против белка, а какие-то — нет. Пространственная структура тут очень важна: белок дан в виде определенного кода, по которому можно понять ее 3D-модель, и у этой 3D-модели может оказаться несколько точек, куда молекула может "прилепиться" — и подействовать — или не "прилепиться"».

По мнению Максима, применение машинного обучения в биологических или медицинских задачах мотивирует к участию в подобных соревнованиях: «Приятно думать, что найденные решения в перспективе могут помогать людям. Но не меньше привлекает и то, что сейчас в этой области появляются методы, за которыми стоит красивая математика — эквивариантные графовые нейросети, нейросети на симплициальных комплексах как обобщениях графов и тому подобное».

Дмитрий Киселев

С Максимом согласен Дмитрий Киселев, аспирант образовательной программы «Компьютерные и информационные науки», 3-й курс, участник команды DrugANNs, который отметил, что применение графовых нейронных сетей  (GNN) является актуальным и быстро развивающимся направлением. «Последнее время GNN активно используют для решения задач в естественных науках, — говорит Дмитрий. — В частности, в химии для предсказания свойств молекул, их моделирования и т.д. Я давно хотел попробовать себя в этой области. Открытия в ней могут стать важными для всего общества, принести пользу». По его словам, задача предсказания активности молекул вполне известная, аналогичные соревнования проходят регулярно. «Я попробовал кучу репозиториев, модернизировал разные идеи, попытался совместить разные подходы, но хорошего качества добиться не удалось. В какой-то момент я даже расстроился и решил, что нужно глубже копать, — объясняет он. — Однако позже наши коллеги, химик и биоинформатик, помогли правильно предобработать данные, и все заработало».

Над задачей также активно работали участники команды из других университетов — химик, биоинформатик, специалисты по машинному обучению, в частности графовым нейросетям. Это позволило DrugANNs найти нужное решение и занять призовое место. «После завершения хакатона мы продолжаем общаться, — говорит Максим. — В том числе и по теме задачи хакатона: она всем нам интересна, мы хотели бы и далее в ней развиваться, участвовать в подобных хакатонах или пробовать силы в иных форматах».

Вам также может быть интересно:

Исследователи из ВШЭ разработали Python-библиотеку для анализа данных движений глаз

Исследовательская группа из Высшей школы экономики разработала Python-библиотеку EyeFeatures, предназначенную для анализа и моделирования данных движений глаз. Инструмент призван облегчить работу ученых и разработчиков, предоставляя им возможность эффективно обрабатывать сложные данные и строить предсказательные модели.

Достижения Вышки в сфере ИИ представили на AIJ

На площадке международной конференции AI Journey состоялась сессия под руководством вице-премьера Дмитрия Чернышенко, посвященная достижениям российских исследовательских центров в области искусственного интеллекта. Руководитель Центра ИИ ВШЭ Алексей Масютин представил ключевые разработки исследователей центра.

Фантастика vs реальность: ВШЭ и Евразийский НОЦ обучили преподавателей Башкортостана работе с ИИ

В начале ноября в Уфе состоялось обучение по программе повышения квалификации «Искусственный интеллект и его применение в научных исследованиях» для преподавателей и ученых Республики Башкортостан. Организаторами программы выступили Центр непрерывного образования ФКН НИУ ВШЭ и Евразийский научно-образовательный центр. Обучение было реализовано в сетевой форме по трем направлениям: гуманитарному, естественно-научному и техническому.

Искусственная революция: как ИИ меняет образование

Искусственный интеллект стремительно ворвался в образовательное пространство и стал помощником и напарником студентов и преподавателей. Сегодня владение ИИ-инструментами становится универсальной компетенцией и требует от педагогов освоения новых навыков и подходов как к учебному процессу, так и к оцениванию успехов студентов.

Ученые НИУ ВШЭ признаны лидерами в сфере развития ИИ

В рамках международной конференции по искусственному интеллекту и машинному обучению AI Journey наградили победителей Национальной премии «Лидеры ИИ — 2024». Лауреатами стали Сергей Самсонов, научный сотрудник Международной лаборатории стохастических алгоритмов и анализа многомерных данных Института искусственного интеллекта и цифровых наук ФКН ВШЭ, и Елена Тутубалина из Института искусственного интеллекта AIRI и Научно-учебной лаборатории моделей и методов вычислительной прагматики ФКН ВШЭ. Еще один ученый Вышки стал финалистом премии.

Обуздать стихию: как ИИ интегрируется в учебный процесс в странах мира

Искусственный интеллект постепенно становится незаменимой частью высшего образования. Его используют и студенты, и преподаватели для снижения объема рутинных задач и расширения своих возможностей. Ограничения и перспективы ИИ рассматриваются в докладе «Начало конца или новой эпохи? Эффекты генеративного искусственного интеллекта (ГИИ) в высшем образовании», который вышел в журнале «Современная аналитика образования» под научной редакцией научного руководителя НИУ ВШЭ Ярослава Кузьминова.

Виртуальный Моцарт, бот «Венчурный капитал» и генерация учебных видео: как в Вышке применяют ИИ

В середине ноября в Вышке состоялся митап, на котором преподаватели, исследователи и административные работники университета представили собственные проекты и поделились опытом использования ИИ-технологий в образовательной и научной деятельности. Встреча прошла в рамках программы повышения квалификации «Искусственный интеллект в образовании и исследованиях».

Международный хакатон в нижегородской Вышке: новые решения экологических проблем

В НИУ ВШЭ — Нижний Новгород прошел международный онлайн-хакатон, посвященный решению экологических проблем. С помощью искусственного интеллекта и компьютерного зрения студенты из России и Белоруссии разрабатывали инновационные решения для сегментации изображений, предиктивного моделирования (прогнозирование будущего на основе данных из прошлого) выбросов и создания чат-ботов для заповедников и национальных парков.

«Экспром(п)т»: Вышка провела первый в России хакатон по промпт-инжинирингу

23 и 24 ноября 2024 года в НИУ ВШЭ состоялся первый в стране хакатон по промпт-инжинирингу «Экспром(п)т». Он собрал участников не только из Москвы и области, но из Волгограда, Нижнего Новгорода, Орла, Казани, Екатеринбурга, Воронежа, Улан-Удэ и других городов. Партнерами соревнования выступили «Яндекс Образование», Yandex Cloud, КРОК, X5 Tech, Сбер, Академия искусственного интеллекта для школьников Благотворительного фонда Сбербанка «Вклад в будущее», а также GPT4Telegrambot.

Названы ключевые тренды в образовании — 2025

Искусственный интеллект и виртуальная реальность все чаще становятся частью образования. Больше половины преподавателей-новаторов готовы поддерживать мультимодальные подходы с использованием ИИ, а каждый третий студент считает, что технологии способны сделать учебу интереснее и удобнее. Такие данные представили Лаборатория инноваций в образовании ВШЭ и холдинг Ultimate Education.