We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

'The Branch of Medicine That Our Developments Primarily Target Is Cardiology'

'The Branch of Medicine That Our Developments Primarily Target Is Cardiology'

© iStock

The application of mathematical models to the diagnosis and treatment of cardiovascular diseases contributes to the effective detection of patient predispositions and supports the selection of best treatment strategies. The use of mathematical models helps create new diagnostic tools and train neural networks to assist clinicians. Researchers from HSE University and colleagues from Saratov State Medical University are engaged in this work as part of the Mirror Laboratories project. In this interview, Natalya Stankevich, Senior Research Fellow at the International Laboratory of Dynamical Systems and Applications of the HSE Campus in Nizhny Novgorod, talks about what the collaboration has achieved so far.

Natalya Stankevich is the leader of the project 'Mathematical and Radiophysical Modelling of the Complex Dynamics of Living Systems for the Development of Methods for Analysing Experimental Data' carried out by the laboratory in collaboration with Saratov State Medical University (SSMU).

— How did the idea come about to create a Mirror Laboratory for interdisciplinary research and the application of mathematical models in medicine?

— The initiative came from HSE University, which has been hosting Mirror Laboratories project contests since 2020. At our laboratory, we were seeking to engage in applied work and welcomed the opportunity to collaborate with medical professionals and radiophysicists, combining our research to achieve new results through the integration of basic science with clinical and experimental studies.

— Which mathematical models have proven most applicable in medicine?

— There are numerous models based on different principles. Some represent abstract mathematical equations whose solutions produce signals which resemble, for instance, a typical ECG waveform. Some models are based on the physiological processes of the cardiovascular system. Others are hybrid models, where an abstract, mathematically simple model is enhanced with elements that reflect the physical system. Each of these models has its own area of application; some provide strictly mathematical results that can later be adapted to more physiologically accurate models.

Our partners have extensive experience in this field. The mathematical model they have been developing for many years describes the dynamics of autonomous cardiovascular regulation and captures the fundamental heart rhythm. The model comprises four main parts: two representing the autonomic nervous system, one regulating mean arterial pressure, and one accounting for the influence of respiration on these processes. The model features a large number of parameters (over 40), some of which our colleagues have derived from experimental data. It accurately replicates the dynamics of the human cardiovascular system.

Through our collaboration, we aim to identify which parameters are most important and could lead to changes in the cardiovascular system that are critical to patient health.

Building on previous work, our colleagues are now developing new, more realistic models of the human cardiovascular system. They are compiling an experimental database on the system’s specific nuances and creating sets of equations to capture effects that reflect individual health characteristics.

© iStock

— In what areas of medicine and for which diseases are these developed models applied?

— The primary branch of medicine that our developments target is, of course, cardiology. This includes a wide range of cardiovascular diseases, such as chronic heart failure, hypertension, coronary heart disease, and others. There are also research areas and objectives focused on more narrow but related fields, such as psychology, sleep medicine, and sports medicine.

The models developed by our colleagues at SSMU make it possible to simulate various states of the cardiovascular system in healthy individuals, such as wakefulness, sleep, and physical activity. They also identified a set of parameters corresponding to arrhythmia, hypertensive crises, and vegetative blockade. Our partners have established a standard set of parameters through their analysis of experimental data, including ECG, blood pressure, and photoplethysmograms. (Photoplethysmography, or PPG, is a method for studying peripheral hemodynamics by measuring blood volume changes in the capillaries using red and infrared light directed at the skin—Ed.)

— How is this work organised?

— Our colleagues at the Cardiology Research Institute work at both the University Clinical Hospital of Saratov State Medical University and the Regional Clinical Cardiology Dispensary. They have access to a large volume of experimental data and conduct surveys of patients and medical professionals. Some of our colleagues are practicing cardiologists themselves. There is also a large archive of data accumulated over the years, which can be reprocessed and analysed in light of new hypotheses. One of our partners' most important developments is a method for calculating the phase synchronisation coefficient between components of the cardiovascular and respiratory systems. Using ECG and PPG analysis, they identify segments in the time series where synchronisation occurs. In 2024, our colleagues from SSMU analysed approximately 900 ECG recordings from patients with various cardiovascular diseases and calculated this coefficient, which effectively distinguishes healthy individuals from those with pathology.

Our team at HSE University is currently studying the conditions under which phase synchronisation occurs, ie we are developing the theoretical foundations explaining the emergence of phase synchronisation intervals. In the future, this theoretical model could help us understand what factors increase or decrease the duration of synchronisation intervals. It may also enable the development of modified models that generate data characteristic of patients with pathology, create realistic simulations, and produce surrogate data for machine learning—ultimately leading to devices that will assist doctors in routine tasks.

In addition to working with cardiovascular patients, our colleagues analyse data and develop models for healthy individuals under various conditions. Currently, experimental data is being collected by recording an electrocardiogram (ECG) at rest, followed by physical activity; then, after a brief rest (during which the heart rate typically recovers within a minute) a final ECG recording is taken. We subsequently process the data using the developed models to analyse how quickly the subject recovers, and we calculate indicators that characterise the complexity and randomness of the signal. Our partners from SSMU have shown that a healthy cardiovascular system exhibits a heart rate with natural randomness, while reduced randomness indicates disruption in rhythm regulation and may signal the presence of disease. Perhaps in the future, our clinical colleagues will be able to draw new insights from this data.

© iStock

— How is your interaction going?

— Our key partner is Saratov State Medical University, and some project participants are physicists and radiophysicists who have built close contacts with medical professionals through many years of collaboration. While dedicating significant time to applied topics, we also aim to establish a solid theoretical foundation, advance dynamical systems theory, and apply its concepts to inspire new clinical experiments.

We are now in the third year of the project, and our medical partners have started proposing new objectives and designing experiments that we could validate through model-based calculations.

— How important is fundamental mathematics for creating models applicable to medicine?

— We are developing methods to verify the reliability and accuracy of our calculations. As part of one of the project’s objectives, we calculate the largest Lyapunov exponent, which indicates the presence of chaotic behaviour in the system. A positive value signifies that the system is functioning chaotically.

In the context of this objective, the main problem is to determine the nature of the non-periodicity in ECG signals. An open question remains: are we observing a periodic regime disrupted by noise, or is the cardiovascular system inherently governed by complex dynamics, with chaos as a fundamental property?

When calculating the Lyapunov exponent, a persistent challenge has been to distinguish between the contributions of noise and the intrinsic chaotic behaviour of the dynamical system. We applied statistical methods to propose a way to assess the contribution of noise and its role in the dynamical system. We were able to demonstrate that overall, the system’s dynamics are chaotic, which is an inherent property of the dynamical system itself. Noise affects the system, and depending on its characteristics, it can disrupt the structure of the chaotic attractor. That is why we need models that account for all these factors and enable us to assess their impact on the dynamic indicator.

Another objective that we are pursuing with our partners is studying the dynamics of cardiomyocytes, or heart muscle cells. Among them are typical cells that only contract, and atypical ones that transmit impulse signals and behave like neurons, functioning based on the Hodgkin–Huxley principle. We are investigating the idea that multistability in cardiomyocytes may predispose individuals to various arrhythmias. At this stage, we are using a relatively simple model to study scenarios involving the development and disruption of multistability. This study is important not only for medical applications but also for advancing bioimplants and tissue engineering—where damaged areas of heart tissue that fail to send proper signals, leading to arrhythmia, can be recreated or replaced.

— What fundamental mathematical problems are you aiming to solve?

— It would be ideal if we could rigorously prove the existence of a chaotic attractor in a model of the human cardiovascular system. However, this is quite challenging for a realistic model. We are working to illustrate some classic bifurcation scenarios that lead to the development of chaos. Demonstrating the development and evolution of chaos in stages, based on a physiologically sound model, would provide strong evidence that a certain model exhibits genuine chaotic behaviour—an important factor in addressing a number of medical problems as well.

Olga Posnenkova, Head of the Atherosclerosis and Chronic Coronary Heart Disease Department of the Research Institute of Cardiology at SSMU

— In recent years, we have made significant progress toward creating and using comprehensive digital twins of individual physiological systems that accurately mimic the processes in both healthy individuals and patients with various diseases. Digital twins are models that enable the prediction of a system’s response to specific impacts under controlled conditions—such as changes in operating parameters or the effect of drugs with different mechanisms of action.

Our collaboration with HSE University through the Mirror Laboratories project enables us to apply mathematical methods to study dynamic processes in the human cardiovascular system, compare results with existing data, and further improve the digital model of circulatory regulation. Mathematics experts broaden our understanding of how to analyse traditionally recorded biological signals, help us identify what information can be extracted from the chaotic components of cardiovascular signals, and determine how to manage health based on these insights. We hope that together we can advance into the field of translational medicine, where the results of basic research find application in real clinical practice.

The Mirror Laboratories format has proven to be an effective mechanism for collaboration. The regular exchange of expertise throughout several years of the project has enabled us to build an interdisciplinary team of like-minded individuals. We have not only expanded our knowledge in mathematical modelling but also learned to understand each other, find common ground, and lay the foundation for long-term collaboration focused on advancing our joint developments.

See also:

Intellectual Capital in the Face of Shocks: Russia and Iran Explore Internationalisation

In today's issue of Schola, Mariya Molodchik, Senior Research Fellow at the International Laboratory of Intangible-Driven Economy and Professor at the School of Economics and Finance at HSE University’s Campus in Perm, discusses a joint project with Iran University of Science and Technology, titled 'Internationalization of Companies from Developing Countries: The Role of Intellectual Resources in Response to Exogenous Shocks.'

HSE Researchers Introduce Novel Symmetry-Aware Neural Network Architecture

Researchers at the HSE Laboratory for Geometric Algebra and Applications have developed a new neural network architecture that can accelerate and streamline data analysis in physics, biology, and engineering. The scientists presented their solution on July 16 in Vancouver at ICML 2025, one of the world's leading conferences on machine learning. Both the paper and the source code are publicly available.

Students from HSE and Other Universities Carry Out Research Expedition at New Chersonesos

As part of the Rediscovering Russia student expedition programme, HSE University organised a research trip under the framework of the School for Young Humanities Scholars to the New Chersonesos museum and church complex in Sevastopol. The results of this expedition will form the basis for proposals on educational projects aimed at shaping young people’s historical memory of the role of Chersonesos, Crimea, and the Byzantine legacy in the history of Russian culture and statehood.

HSE Researchers Determine Frequency of Genetic Mutations in People with Pulmonary Hypertension

For the first time in Russia, a team of scientists and clinicians has conducted a large-scale genetic study of patients with pulmonary arterial hypertension. The team, which included researchers from the International Laboratory of Bioinformatics at the HSE Faculty of Computer Science, analysed the genomes of over a hundred patients and found that approximately one in ten carried pathogenic mutations in the BMPR2 gene, which is responsible for vascular growth. Three of these mutations were described for the first time. The study has been published in Respiratory Research.

First Caucasus School on Experimental Research and Cognitive Sciences Takes Places in Adygea

On September 17–20, 2025, the First Caucasus School on Experimental Research and Cognitive Sciences took place at the Gornaya Legenda venue of Adyghe State University (ASU). The event was organised by the ASU Experimental Linguistics Laboratory, the HSE Centre for Language and Brain, and the HSE Centre for Sociocultural and Ethnolinguistic Studies. The school brought together over 50 participants—students, doctoral candidates, and early-career researchers from across Russia, along with lecturers and speakers from France, Serbia, China, Turkey, Kazakhstan, and Uzbekistan.

HSE Scientists Reveal How Disrupted Brain Connectivity Affects Cognitive and Social Behaviour in Children with Autism

An international team of scientists, including researchers from the HSE Centre for Language and Brain, has for the first time studied the connectivity between the brain's sensorimotor and cognitive control networks in children with autism. Using fMRI data, the researchers found that connections within the cognitive control network (responsible for attention and inhibitory control) are weakened, while connections between this network and the sensorimotor network (responsible for movement and sensory processing) are, by contrast, excessively strong. These features manifest as difficulties in social interaction and behavioural regulation in children. The study has been published in Brain Imaging and Behavior.

‘The Future Is Not Predetermined—We Shape It with the Decisions We Make Today’

The strategic technological project ‘National Centre of Science, Technology, and Socio-Economic Foresight’ at HSE University spans horizons of 10 to 30 years and involves developing new methodologies of scenario analysis. It brings together researchers from different fields and helps to form a holistic vision of the future. The aim of the project is not only to produce forecasts but also to generate practical recommendations for government and business. Anastasia Likhacheva, Dean of the HSE Faculty of World Economy and International Affairs, explains why it is important to learn to ask the right questions about the future.

Scientists Discover How Correlated Disorder Boosts Superconductivity

Superconductivity is a unique state of matter in which electric current flows without any energy loss. In materials with defects, it typically emerges at very low temperatures and develops in several stages. An international team of scientists, including physicists from HSE MIEM, has demonstrated that when defects within a material are arranged in a specific pattern rather than randomly, superconductivity can occur at a higher temperature and extend throughout the entire material. This discovery could help develop superconductors that operate without the need for extreme cooling. The study has been published in Physical Review B.

Scientists Develop New Method to Detect Motor Disorders Using 3D Objects

Researchers at HSE University have developed a new methodological approach to studying motor planning and execution. By using 3D-printed objects and an infrared tracking system, they demonstrated that the brain initiates the planning process even before movement begins. This approach may eventually aid in the assessment and treatment of patients with neurodegenerative diseases such as Parkinson’s. The paper has been published in Frontiers in Human Neuroscience.

Global AI Trends Discussed at International Foresight Workshop at HSE University

At an international foresight workshop on artificial intelligence held at HSE University, Russian and foreign scholars discussed the trends and challenges arising from the rapid development of AI.