HSE Researchers Teach Neural Network to Distinguish Origins from Genetically Similar Populations

Researchers from the AI and Digital Science Institute, HSE Faculty of Computer Science, have proposed a new approach based on advanced machine learning techniques to determine a person’s genetic origin with high accuracy. This method uses graph neural networks, which make it possible to distinguish even very closely related populations.
Over the past 10–15 years, genetic analysis has become increasingly popular not only as a tool for medical diagnostics, but also as a means of ancestry research. DNA testing allows people to learn more about their ethnic background, identify the places where their ancestors lived, and determine the number of Neanderthal mutations in a person’s genome.
This has become possible thanks to the development of modern technologies—such as genotyping, data storage and processing systems, and machine learning—and the significant reduction in their cost. However, current testing methods are unable to differentiate between genetically similar populations that have lived in adjacent regions for extended periods.
Researchers from the AI and Digital Science Institute have developed a method for distinguishing between individuals from closely related populations. At the heart of this technology are graph neural networks, which do not rely on DNA sequences but instead use graphs to represent genetic links between individuals with shared genome segments. These shared segments indicate the degree of kinship between people, revealing how many generations back their common ancestors lived. The more overlaps there are, the closer their ancestral connection is. In the model, each person is represented by a vertex in the graph, and the strength of the connection between them is indicated by the edges in the graph.
The method was tested on data from various regions. The results were particularly insightful for the population of the East European Plain, as a large dataset had already been compiled there. The graph neural network was able to accurately determine the population affiliation of individuals from genetically similar ethnic groups.
Aleksei Shmelev
‘Existing methods of genetic analysis address a different task: they identify affiliation with large, isolated groups, such as determining whether someone has French, German, or English ancestry. Our method enables the analysis of closely related populations, which is particularly relevant for Russia, a country with a diverse ethnic background,’ said Aleksei Shmelev, one of the study's authors and Research Assistant at the HSE International Laboratory of Statistical and Computational Genomics, AI and Digital Science Institute.
In their future work, the researchers aim to train the neural network to predict the proportion of different populations within a genome.
They have named their development AncestryGNN, which stands for 'Neural Network-Based Prediction of Population Affiliation via Shared Genome Segments.’
Vladimir Shchur
As noted by Vladimir Shchur, Head of the International Laboratory of Statistical and Computational Genomics at the AI and Digital Science Institute, HSE University, the proposed method holds great potential for more accurate understanding of human history and can be applied in genealogy and anthropology research.
This research was supported by a grant from the Government of the Russian Federation as part of the federal program ‘Artificial Intelligence.’
See also:
Scientists Discover That the Brain Responds to Others’ Actions as if They Were Its Own
When we watch someone move their finger, our brain doesn’t remain passive. Research conducted by scientists from HSE University and Lausanne University Hospital shows that observing movement activates the motor cortex as if we were performing the action ourselves—while simultaneously ‘silencing’ unnecessary muscles. The findings were published in Scientific Reports.
Russian Scientists Investigate Age-Related Differences in Brain Damage Volume Following Childhood Stroke
A team of Russian scientists and clinicians, including Sofya Kulikova from HSE University in Perm, compared the extent and characteristics of brain damage in children who experienced a stroke either within the first four weeks of life or before the age of two. The researchers found that the younger the child, the more extensive the brain damage—particularly in the frontal and parietal lobes, which are responsible for movement, language, and thinking. The study, published in Neuroscience and Behavioral Physiology, provides insights into how age can influence the nature and extent of brain lesions and lays the groundwork for developing personalised rehabilitation programmes for children who experience a stroke early in life.
Scientists Test Asymmetry Between Matter and Antimatter
An international team, including scientists from HSE University, has collected and analysed data from dozens of experiments on charm mixing—the process in which an unstable charm meson oscillates between its particle and antiparticle states. These oscillations were observed only four times per thousand decays, fully consistent with the predictions of the Standard Model. This indicates that no signs of new physics have yet been detected in these processes, and if unknown particles do exist, they are likely too heavy to be observed with current equipment. The paper has been published in Physical Review D.
HSE Scientists Reveal What Drives Public Trust in Science
Researchers at HSE ISSEK have analysed the level of trust in scientific knowledge in Russian society and the factors shaping attitudes and perceptions. It was found that trust in science depends more on everyday experience, social expectations, and the perceived promises of science than on objective knowledge. The article has been published in Universe of Russia.
Institute for Robotics Systems Established at HSE University
As decided by the HSE University Academic Council, a new Institute for Robotics Systems will be established at HSE, and with a strong fundamental base. It will cooperate with relevant departments across the university and engage students and doctoral candidates in research and development (R&D). First Vice Rector of HSE University and Director of the Institute for Statistical Studies and Economics of Knowledge, Leonid Gokhberg, discussed the expected practical results and the framework for cooperation with an industrial partner.
Scientists Uncover Why Consumers Are Reluctant to Pay for Sugar-Free Products
Researchers at the HSE Institute for Cognitive Neuroscience have investigated how 'sugar-free' labelling affects consumers’ willingness to pay for such products. It was found that the label has little impact on the products’ appeal due to a trade-off between sweetness and healthiness: on the one hand, the label can deter consumers by implying an inferior taste, while on the other, it signals potential health benefits. The study findings have been published in Frontiers in Nutrition.
HSE Seeks New Ideas for AI Agents: Initiative Competition Launched
HSE University is inviting researchers and lecturers to present concepts for new digital products based on artificial intelligence. The best projects will receive expert and technological support. Applications are open until December 19, 2025.
IDLab: Fascinating Research, Tough Deadlines, and Academic Drive
The International Laboratory of Intangible-driven Economy (IDLab) was established at the HSE campus in Perm 11 years ago. Its expertise in data processing and analysis allows researchers to combine fundamental studies with applied projects, including the development of risk and cybersecurity models for Sber. The head of the laboratory, Professor Petr Parshakov, and Senior Research Fellow Professor Mariya Molodchik spoke to the HSE News Service about IDLab’s work.
HSE Lecturers Awarded Yandex ML Prize 2025
The Yandex ML Prize is awarded to lecturers and heads of educational programmes who contribute to the development of artificial intelligence in Russia. This year, 10 laureates were selected from 300 applicants, including three members of the HSE Faculty of Computer Science (FCS). A special Hall of Fame award was also presented for contributions to the establishment of machine learning as an academic field. One of the recipients was Dmitry Vetrov, Research Professor at the HSE FCS.
HSE Tops Ranking of Universities Participating in Priority 2030 Programme
The Russian Ministry of Science and Higher Education has published an updated list of participants in the Priority 2030 programme. A total of 106 universities will receive support this year. HSE University was included in the first group and topped the ranking.


