Ученые НИУ ВШЭ показали эффективность машинного обучения при прогнозировании инфляции
Инфляция — один из ключевых показателей экономической стабильности, и точное прогнозирование ее уровня в различных регионах имеет большое значение для государства, бизнеса и домохозяйств. Татьяна Букина и Дмитрий Кашин из НИУ ВШЭ в Перми выяснили, что машинное обучение для прогнозирования инфляции превосходит классические эконометрические модели в долгосрочных прогнозах. Исследование проводилось на примере субъектов Приволжья. Результаты опубликованы в журнале HSE Economic Journal.
Для экономики важно прогнозирование инфляции, особенно оно стало актуальным после перехода России к режиму таргетирования инфляции в 2014 году. Это означает, что Банк России устанавливает конкретные цели по уровню инфляции и использует различные инструменты для их достижения.
Для прогнозирования инфляции используются различные данные: индекс потребительских цен, уровень безработицы, курсы валют и ставка ЦБ. Чтобы систематизировать эти данные для прогноза, экономисты из НИУ ВШЭ в Перми использовали данные Единой межведомственной информационно-статистической системы (ЕМИСС).
Основная цель исследователей была в том, чтобы определить, какая модель точнее прогнозирует региональную инфляцию: традиционные эконометрические модели временных рядов или современные методы машинного обучения. В исследовании анализируются данные по 14 субъектам Приволжского федерального округа с января 2010 года по декабрь 2022 года. Для анализа использовались программные среды R Studio и Python: прогнозирование временных рядов проводилось в R Studio, а модели машинного обучения, включая метод опорных векторов, градиентный бустинг и случайный лес, реализовывались в Python. Прогнозы выполнялись на тестовых выборках, что позволило избежать переобучения моделей и получить более точные оценки.
Авторы выбрали метод кросс-валидации с тестовыми выборками одинакового размера. Это позволяет моделям обучаться на данных одного периода и тестироваться на другом, что обеспечивает стабильность и точность прогнозов.
Татьяна Букина
«Для обеспечения точной работы методов машинного обучения необходимо выбрать оптимальные гиперпараметры в моделях. Гиперпараметры отличаются от других параметров моделей тем, что устанавливаются до начала обучения и определяют спецификацию модели. Для выбора оптимальных гиперпараметров в работе используется кросс-валидация. При кросс-валидации временных рядов тренировочные данные идут строго перед тестовыми, они не пересекаются, как при работе со стандартными данными», — отмечает доцент факультета социально-экономических и компьютерных наук НИУ ВШЭ — Пермь Татьяна Букина.
Исследование показало, что модель градиентного бустинга является наиболее точной среди всех рассмотренных моделей машинного обучения для прогнозирования региональной инфляции. Она обеспечивает более точные прогнозы, чем авторегрессионные модели на большем числе периодов. Так, на горизонтах прогнозирования в 3, 6, 21 и 24 месяца модель градиентного бустинга превосходит базовую модель AR(1) на 20,3, 16,2, 72,5 и 77,7% соответственно. Модель AR(1) — статистическая модель, используемая для анализа и прогнозирования временных рядов, — основана на предположении, что текущее значение временного ряда зависит от его предыдущего значения с добавлением некоторой случайной ошибки.
Модель случайного леса и метод опорных векторов также показали точные прогнозы на длительных горизонтах в 21 и 24 месяца и оказались лучше модели AR(1) на 72,5 и 77,7% соответственно. Случайный лес объединяет множество решающих деревьев для повышения точности и устойчивости прогнозов, затем с помощью регрессии усредняет ответы или выбирает наиболее частое значение данных. Метод опорных векторов находит оптимальную линию, разделяющую данные, и минимизирует ошибки.
Авторы считают, что их результат подтвердил: методы машинного обучения могут быть эффективными для прогнозирования инфляции на разных временных горизонтах.
Татьяна Букина отмечает: «Наше исследование показало, что для долгосрочных прогнозов машинное обучение предлагает более надежные инструменты. Однако традиционные эконометрические модели все еще играют важную роль в краткосрочных прогнозах и не должны быть полностью исключены из арсенала аналитиков. Комбинирование методов эконометрического моделирования и машинного обучения может существенно повысить точность прогнозов региональной инфляции. Это особенно важно в условиях высокой неопределенности и быстро меняющейся экономической среды».
В рамках исследования также получилось выделить особенности предсказания инфляции для разных регионов. Например, в моделях машинного обучения сезонность инфляции была характерна только для Пермского края, Нижегородской, Пензенской и Саратовской областей. В Республике Татарстан важным фактором оказался конкретный месяц, на который рассчитывался прогноз.
Среднее значение инфляции за три предыдущих месяца оказалось значимым фактором в моделях для Республики Мордовия, Нижегородской и Ульяновской областей, а также для Чувашской Республики в модели случайного леса.
Каждый регион имеет свою специфику, связанную с экономической структурой, наличием природных ресурсов и географическим положением. Эти факторы объясняют различия в динамике инфляции и по важным макроэкономическим показателям.
Вам также может быть интересно:
Ученые НИУ ВШЭ предложили модель, лучше других определяющую тематику текстов
Тематические модели — алгоритмы машинного обучения, способные сортировать большие объемы текстов по темам. Исследователи из НИУ ВШЭ в Санкт-Петербурге сравнили пять тематических моделей и определили, какие из них работают лучше. Наименьшее число ошибок показали две модели, одна из которых, GLDAW, — разработка Лаборатории социальной и когнитивной информатики НИУ ВШЭ в Санкт-Петербурге. Статья опубликована в журнале PeerJ Computer Science.
«Цель школы Spring into ML — объединить молодых ученых, занимающихся математикой ИИ»
Институт искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ и Университет Иннополис провели для студентов, аспирантов и молодых ученых недельную школу, посвященную применению математики в машинном обучении и искусственном интеллекте. 50 участников Spring into ML прослушали 24 доклада о машинном обучении, участвовали в тематических питч-сессиях и прошли два мини-курса по диффузионным моделям — развивающейся области ИИ для генерации данных.
В России разработана программа для диагностики дислексии
Ученые НИУ ВШЭ создали инструмент, который оценивает наличие и степень дислексии у школьников, учитывая их пол, возраст, класс школы и данные видеоокулографии. В 2024 году планируется внедрение программы в клиническую практику. Исследования проводились специалистами в области машинного обучения и нейролингвистами в Центре искусственного интеллекта НИУ ВШЭ.
Студенты со всей России пройдут интенсив по компьютерным наукам от ВШЭ и «Яндекса»
С 1 по 13 апреля в Москве на базе факультета компьютерных наук НИУ ВШЭ пройдет бесплатный студкемп по машинному обучению, организованный в рамках программы «Яндекса» для студентов IT-специальностей. За две недели студенты изучат материал, на освоение которого в рамках традиционных программ уходит от пары месяцев до нескольких семестров. Они получат фундаментальные знания в области искусственного интеллекта, а также познакомятся с практиками применения нейросетей в сервисах «Яндекса».
Нейросети всевластья: ИИ распутывает клубок взаимоотношений людей, эльфов и хоббитов
3 января родился один из самых популярных писателей прошлого века Джон Рональд Руэл Толкин. Исследователи из НИУ ВШЭ, AIRI и МИСИC использовали машинное обучение для исследования социальных связей между персонажами его вселенной Средиземья. Ученые считают, что этот подход найдет применение во многих сферах за пределами литературы. Результаты работы опубликованы в IEEE Xplore.
«Каждая статья на NeurIPS — значительный результат»
Сотрудники факультета компьютерных наук НИУ ВШЭ представят 12 своих работ на 37-й конференции NeurIPS. Conference and Workshop on Neural Information Processing Systems — одно из самых значительных событий в сфере искусственного интеллекта и машинного обучения. В этом году она пройдет с 10 по 16 декабря в Новом Орлеане (США).
Совместный проект ученых НИУ ВШЭ и СурГУ поможет предотвратить повторные инфаркты и инсульты
Один из проектов, победивших на конкурсе «Зеркальные лаборатории» НИУ ВШЭ в июне этого года, посвящен технологиям машинного обучения в прогнозировании исходов острого коронарного синдрома. Его реализуют Международная лаборатория биоинформатики НИУ ВШЭ и Научно-образовательный центр Медицинского института Сургутского государственного университета. Как зародился этот совместный проект, чем он поможет пациентам и как будет организована работа по его реализации, рассказывает заведующая Международной лабораторией биоинформатики, доцент ФКН НИУ ВШЭ Мария Попцова.
На факультете компьютерных наук открываются новые лаборатории
По итогам конкурса проектов на факультете компьютерных наук НИУ ВШЭ открываются две новые лаборатории. Лабораторию матричных и тензорных методов в машинном обучении возглавит Максим Рахуба, доцент департамента больших данных и информационного поиска. Лабораторией облачных и мобильных технологий будет руководить профессор департамента программной инженерии Дмитрий Александров.
«Интерес к приложениям машинного обучения в биоинформатике с каждым годом растет»
28–30 августа, накануне нового учебного года, факультет компьютерных наук ВШЭ провел четвертую летнюю школу по машинному обучению в биоинформатике. В этом году на событие зарегистрировались 670 человек, более 300 посетили ее очно.
ФКН в четвертый раз проведет летнюю школу по машинному обучению в биоинформатике
На факультете компьютерных наук Вышки с 28 по 30 августа пройдет летняя школа по машинному обучению в биоинформатике. В течение трех дней участников ждут лекции и семинары от ведущих специалистов в данной области из ВШЭ, Сколтеха, AIRI, МГУ, МФТИ, Genotek, Sber Artificial Intelligence Laboratory.